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Abstract—We have conducted a detailed simulation of the Large
Synoptic Survey Telescope (LSST) in order to understand the
system’s ability to link detections of asteroids within and across
nights in order to populate a catalog of asteroid orbits. We
show that LSST, using its baseline survey cadence, should be
able to successfully link and catalog asteroids. In our simulation
of a single monthly observing cycle, LSST produced 66 million
candidate detections of main belt asteroids (MBAs) and near-
Earth objects (NEOs), of which 77% were spurious detections
related to detector noise or image processing. Using the Moving
Object Processing System (MOPS, Denneau et al. 2013, PASP
125, p. 357), we were able to assemble single-night “tracklets”
with negligible losses, but a purity of only 43%. The next stage
of linking led to three-night orbits with data sets no more than 12
days in length, and it is at this stage that the false detections are
readily removed from the data stream. Main-belt linkages were
essentially complete and 99.8% pure. Similarly, only 0.02% of
linked detections involving NEOs were spurious. On the other
hand, NEO linking was 93.6% complete, indicating that 6.4%
of potentially findable NEOs were not successfully linked. We
believe that this rate can be improved with careful tuning of
the MOPS linking algorithms. The NEO catalog was affected
by main-belt confusion so that mis-linked MBAs appeared as
NEOs, and many correctly linked MBAs were consistent with
NEO orbits. We show that these cases arise primarily from
MBAs detected at lower solar elongations and we postulate that
this is an artifact of a one month simulation that will be readily
resolved by surveying over many months.
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1. INTRODUCTION
The Large Synoptic Survey Telescope (LSST) is an ambitious
project that has the potential to make significant contributions
to Near-Earth Object (NEO) search efforts. LSST is jointly
funded by the National Science Foundation and the Depart-
ment of Energy, with significant enabling contributions from
private donors. Construction is well underway and major
optical elements are complete. Figure 1 depicts the telescope
and dome design in cutaway. LSST first light is set for
2020, followed by two years of commissioning. Once regular
survey operations begin in 2022, LSST will systematically
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Figure 1. A computer rendering of the baseline design of
the LSST dome with a cutaway to show the telescope within.

Image Credit: LSST.

survey the observable sky over a ten-year period from its site
on Cerro Pachon, Chile.

With an 8.4 m aperture (6.7 m effective), 9.6 square degree
field of view, and a 3.2-Gigapixel camera, LSST has the
potential to become the world’s most capable asteroid survey
instrument. LSST will be able to cover over 6000 square
degrees of sky per clear night with single visit exposures of
30 s, reaching a faint limit of 24.5 mag in the r band [1]. The
survey’s search cadence, however, is a critical factor for NEO
discovery performance, and there are multiple science drivers
whose different cadence needs are being discussed and will
eventually be balanced to shape the final survey strategy.

We have conducted a study to examine the NEO search
performance of various LSST search strategies, paying par-
ticular attention to the challenges of linking large numbers of
asteroid detections in the presence of false detections. The
full report is available online [2]; however, in this paper we
summarize the linking performance aspect of the complete
study. Our approach was to derive lists of synthetic detections
for a baseline the LSST survey, based on an assumed model
for the populations of solar system objects from the main
asteroid belt inwards to the near-Earth population. These
detection lists are combined with false detection lists that
model both random noise and non-random artifacts resulting
from image differencing algorithms. These voluminous de-
tection lists are fed to the Moving Object Processing System
(MOPS) [3], which attempts to link the synthetic detections
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correctly without becoming confused or overwhelmed by the
false detections.

The LSST baseline survey cadence relies primarily on single
night pairs of detections, with roughly 30 minutes between
the elements of a detection pair. These pairs form what are
known in MOPS parlance as tracklets, and sets of tracklets are
linked across multiple nights to form tracks, which can then
be sent to the final step of orbit determination. The strategy of
using pairs is an aggressive and potentially fragile approach,
but theoretically represents the most productive NEO search
with the minimum impact on other LSST science drivers. If
linking cannot be accomplished successfully for pairs then
the LSST project may have to consider alternate observing
strategies.

2. LSST MODELING INPUTS
The two major questions addressed by our study can be in-
formally stated as “If linking is successful then what fraction
of NEOs will LSST discover?” and “Will MOPS be able to
successfully link transient detections to form asteroid orbits?”
The first question was addressed by quantifying the complete-
ness of the NEO catalog produced by LSST, i.e., the fraction
of solar system objects in a given population and size range
that LSST would find. Our primary metric for LSST NEO
performance was the integral NEO discovery completeness
for absolute magnitude H < 22. These performance results
from our study are presented in [2] and [4].

The second question, which is our focus here, asks whether
MOPS will work and revolves on the risk of confusion and
an ensuing combinatoric crisis in computation. Indeed, the
central challenge for the LSST NEO survey is the linking
problem, where putative detections of individual moving
objects are combined, first within each night, and then across
multiple nights, thereby confirming with high confidence
that a moving object has been detected and allowing the
associated orbit to be computed and cataloged.

Both of these questions required a high-fidelity asteroid de-
tection model to reach an answer, but the modeling approach
was markedly different between the two. For the linkage
problem we must test MOPS in the presence of confusion
due to NEOs, Main-Belt Asteroids (MBAs) and false de-
tections. Thus we must generate full-density detection lists
and then feed these lists to the linking engine. The number
of detections entering the linking pipeline must match the
expected data load of the real LSST, and subtle details in the
detection model are less important than assuring the antic-
ipated volume of detections. Thus MOPS testing entails the
most computational stressing part of the study, but fortunately
these full-density simulations need only take place over a
short time period, e.g., a one month-long observing cycle, to
understand the MOPS performance. This means that only
a tiny fraction of the 10-year survey need be simulated to
understand whether MOPS will perform successfully.

In contrast, to obtain the end-of-survey NEO completeness
we ran the entire 10-year survey. However, we were able to
assume that MOPS would be tested elsewhere, and so we did
not need a full-density detection list, nor did we even need
to run MOPS. In fact, only the NEO population needed to be
included in the simulation; noise and MBAs were neglected.
Moreover, a sampling of only a few thousand NEOs was
adequate to answer the question. But while the computational
load for completeness testing was more manageable, the

fidelity of the detection model was crucial.

With this background in mind, we now turn to a discussion of
the key simulation elements that form the framework of the
study.

Operational Simulator

LSST’s Operational Simulator (OpSim) tool [5] uses project
scheduling tools to compute all of the field pointings and
ancillary information for a full-length, high-fidelity survey,
comprising∼2.5 million individual field visits over ten years.
OpSim models include realistic weather, seeing, sky back-
ground noise, etc. For our purposes, the essential OpSim
output is a field-by-field listing of the pointings, camera
rotation angles, filter selections and the SNR=5 limiting
magnitudes m5. We used the outputs of OpSim runs as
inputs to our study, and our focus for the linking tests was the
LSST baseline OpSim run at the time, which was designated
enigma_1189.

Solar System Model

We utilized the Granvik model of the NEO population [6],
which contained 801,959 Keplerian orbits with absolute mag-
nitude down to H < 25. The distribution of its orbital
elements is roughly similar to earlier work by Bottke et al.
[7]; however, the Granvik population is size-dependent and
its size-frequency distribution covers theH > 22 space better
than the previous work which underestimated the count. (See
Figure 2.) Our NEO population is artificially deficient of
large NEO with H < 17; however, these are believed to
be essentially all discovered and there are only about 500 of
them, thus they are a negligible fraction of other detections
in an LSST field of view. Initially, we also used the earlier
Bottke NEO model [7] that also contains objects down to
H < 25; however, its total number is only 268, 896 and is
thus deficient in small objects, particularly for H > 22.

MBAs will dominate the number density of moving objects in
the LSST field of view, and they represent a source of back-
ground noise and possible confusion for NEO identification.
We used the Grav model [8] of the main-belt population (see
Figure 2). This population contains 13,883,361 orbits and is
the most robust population model available to date.

In the Grav MBA model, the cumulative distribution slope
is equal to α = 0.28 ± 0.01 for H between 16 and 20.
However, the population was created for a Pan-STARRS4-
like survey with a limiting magnitude ofmV = 24.5, and so it
is truncated to remove MBAs that are fainter thanmV = 24.5
when at perihelion and at opposition. This truncation results
in an artificial break, seen in Figure 2, in the Grav population
size-frequency distribution at H ' 21. We verified that this
artificial break does not have a meaningful effect on the sky-
plane densities of detectable MBAs.

Focal Plane Model

An accurate model of the LSST focal plane is required as a
first step in developing high-fidelity detection lists. Figure 3
is a schematic diagram of the LSST focal plane, which
consists of 21 CCD rafts with each raft comprising a 3 × 3
array of 4k×4k CCDs. Thus there are a total of 21×9 = 189
CCDs. There are also guide and wavefront sensor CCDs in
the corners of the focal plane, but we assume they are not
useable. Our modeling approach for the focal plane leverages
the existing MOPS formulation, which allows either a square
or circular field and allows masking of square sub-regions
within the field. We model LSST as a square focal plane with
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Figure 2. Comparison of MBA and NEO size-frequency
distributions, where the model MBA slope change at
H ∼ 21 is an artifact of designing a population of

Pan-STARRS4 accessible MBAs.

Figure 3. Schematic of the LSST focal plane. The heavy
green lines indicate the boundaries of the detection area. The

red squares represent the CCD rafts and the small blue
squares represent individual CCDs

a 5 × 5 array of rafts and mask the four corner rafts. The
LSST focal plane will take different orientations and so we
rotate this partially masked focal plane as shown in Fig. 4.

We also need to account for the raft gaps and the smaller
chip gaps within each raft. While the exact dimensional
specifications for LSST focal plane are not yet finalized,
our approach assumes each raft occupies a focal plane area
of (2500 arcsec)2 and within each raft area the CCD area
is (2400 arcsec)2, which is in accordance with the current
baseline focal plane design. With these assumptions we find
a focal plane fill factor of Ffill = 92%, which is the fraction
of focal plane area that is covered with active CCD pixels.
Our current study approach is to statistically under-sample
detections according to the fill factor.

Figure 4. Depiction of detections and masking for a rotated
field. Position Angle (PA) in this example is 20◦ (angle of

rotation from North towards East).

3. THE LSST DETECTION STREAM
Synthetic asteroid detections

We generated synthetic detections for NEO and MBA popu-
lation models by propagation of the orbits of objects in our
Solar System Model to the epochs of the OpSim fields. The
propagation used JPL’s small body codes with the DE405
planetary ephemerides, where all planets, plus Pluto and the
Moon were perturbing bodies. We did not use any asteroids
as perturbers. Only detections inside of the rotated field were
analyzed and filtered based on the field limiting magnitude
and other selected parameters of the detection model.

To simulate the observational constraints and limitations of
the LSST processing pipeline and CCD effects, we employed
a set of filters that determined whether a detection that ful-
filled the limiting magnitude was still visible. We included
fill factor, vignetting, a smooth fading function (rather than
a step function) at the SNR=5 limiting magnitude m5, and
trailing losses. The full details of this detection model are
discussed in [2] and [4].

Figure 5 shows the spatial density of synthetic NEO and
MBA detections in LSST fields as a function of ecliptic
latitude and the field limiting magnitude. Here we see that
deep fields on the ecliptic plane can have over 5000 asteroids,
almost entirely consisting of MBAs. The object density drops
off rapidly as fields become shallower and move farther from
the ecliptic. Fields more than 25◦from the ecliptic show no
more than a few hundred detections.

Measurement errors

Each ephemeris-based position in the field was altered by
adding realistic astrometric and photometric errors based
on the computed signal-to-noise ratio (SNR). The limiting
magnitude of the field m5 is defined for SNR=5. The SNR
of a detection is computed from the difference between the
computed magnitude m and m5 as

SNR =
1√

(0.04− γ).χ+ γχ2
(1)
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Figure 5. Number of detected MBAs per LSST field as a
function of limiting magnitude (V) and ecliptic latitude.

where γ = 0.038 and χ = 100.5(m−m5) [9]. Then,
photometric uncertainty is derived as

σm = 2.5 log10

(
1 +

1

SNR

)
. (2)

and the computed m is combined with an error drawn from a
normal distribution with a mean of zero and variance σ2

m.

We have assumed that LSST astrometry is measured relative
to a post-Gaia star catalog and so absolute systematic errors
are negligible while relative errors are expected at a floor level
of 10 mas. The astrometric error σastr for any detection is
therefore computed as

σ2
astr = (10 mas)2 +

(
Θ

SNR

)2

. (3)

Asteroids are moving targets and so, depending on the rate of
motion, their shape deviates from a stellar PSF and is in fact
a convolution of the motion and the PSF. The faster the object
moves, the larger the astrometric error. Therefore, if the trail
length L > Θ, the seeing term Θ in Eq. 3 is replaced by the
geometric mean of seeing and trail length as Θ′ =

√
ΘL.

To obtain realistic astrometry, we combine the computed
position with an astrometric error term drawn from a normal
distribution with a zero mean and variance of σ2

astr. Figure 6
shows histograms of astrometric uncertainties, in both linear
and log-scale. The latter shows that there are two populations
of NEA detections, those with high SNR and therefore low
uncertainty, around 10 mas, and another centered around
100 mas from low SNR detections, which presumably also
includes most of the objects with relatively fast rates of
motion. The median astrometric error obtained for NEOs is
47 mas.

False detections

The LSST transient detection data stream will include many
detections that are not associated with solar system objects,
and the objective of linking only detections of real moving
objects to form tracks and orbits represents a significant chal-
lenge. There are three broad categories of non-solar system
transients that are expected from LSST. The first category

of LSST transient detections arise from real astrophysical
phenomena (e.g., variable stars, supernovae, etc.) that appear
in the same location in multiple instances. Such astrophysical
transients will be filtered out of the MOPS input stream by
virtue of their stationary appearance and thus will not affect
the asteroid linking problem.

The remaining two categories of non-solar system transients
consist of spurious detections arising from either random
noise or image differencing artifacts, both of which will enter
the MOPS input stream. The first source of false detections,
from random fluctuations in the sky background and from
detector noise, is driven by gaussian statistics at the individual
pixel level. The numberN>η of these random sources above
a given signal-to-noise threshold η in the CCD image where
Gaussian noise is convolved with a Gaussian PSF follows the
formula from [10]

N>η =
S

25/2π3/2σ2
g

ηe−η
2/2, (4)

where S is the total number of pixels in the focal plane array,
σg ' Θ/2.35, and Θ is the FWHM seeing measured in pix-
els. The number of random false positives depends strongly
on the seeing, with about ∼1200 random false detections
per LSST field at Θ = 0.6 arcsec and only ∼400 at 1.0
arcsec seeing. The average enigma_1189 seeing of 0.80
arcsecond leads to 650 random false positives with SNR > 5
in one LSST image.

We generated random false positives following Equation 4 in
random x-y positions in the field. The number of random
false positives for a given field was selected from a normal
distribution with a mean and variance of N from equation 4.
Then η was randomly assigned according to a normal distri-
bution. Finally, the magnitude can be derived according to
V = VLIM − 2.5 log(η/η0) where VLIM is the m5 limiting
magnitude at η0 = 5. The number density of random false
positives has a strong dependence on SNR; therefore, most
of the random noise sources will be near the the limiting
magnitude (Figure 7).

The second source of false detections comes from difference
image artifacts, which arise from differencing a field image
with a fiducial image of the static sky that has been derived
from a stack of several (or a great many) images of the
same field over some time period. This differencing removes
stationary objects so that only transient sky phenomena, in-
cluding moving objects, appear as detections in the difference
image. However, registration errors across the field can leave
dipole-shaped artifacts in the difference image at the location
of a static source. Artifacts may also originate from a poor
convolution kernel, variable seeing across the field, stray light
in the optical system or reflections in the lenses. Artifacts
are often concentrated around bright sources due to saturation
or diffraction spikes, and masking around these sources can
be an efficient means of substantially reducing the rate of
artifacts. Although an improved optical configuration and
machine learning can remove many of these false artifacts,
some fraction will always remain in the data stream unless
unacceptable numbers of real detections are also filtered from
the detection stream.

For this work we assumed the estimated density of differenc-
ing artifacts derived by Slater et al. [11], who used actual
imagery obtained by the Dark Energy Camera (DECAM) on
Cerro Tololo [12] and processed them with a nascent version
of the LSST image processing pipeline. The key result from
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Figure 6. Distribution of astrometric uncertainties of NEOs - normal scale (left) and logarithmic scale (right).

the Slater et al. report is that “the LSST pipeline is capable
of producing a clean sample of difference image detections,
at roughly the 200–400 per square degree level.” This is their
final result, but our work used a preliminary estimate as the
point of departure for our linking simulations. This earlier
estimate allowed for roughly 90–380 artifacts per square
degree, and we took the geometric mean of this range as the
starting point, which leads to 185/deg2 or 1777 artifacts per
LSST field. Slater et al. did find far higher concentrations of
artifacts near bright stationary sources, which they eliminated
by masking the area around them, thus allowing the reported
low artifact density. Following their result, we modeled bright
source masking by reducing the effective fill factor by 1%.

To seed the detection list with artifacts, we selected the num-
ber of artifacts in each field according to a normal distribution
with mean and variance 1777 and distributed them randomly
across the field. Thus our artifact rate was roughly 3× the rate
from random noise in typical seeing (Figure 8), and about
half of the upper bound derived by Slater et al. [11] from
processing actual DECam data.

Based on the Slater et al. report [11], we model that the SNR
distribution of differencing artifacts follows ∝ SNR−2.5.
(See Figure 7.) The magnitude of a simulated artifact is
then derived according to V = VLIM − 2.5 log(η/η0) where
VLIM is the m5 limiting magnitude at η0 = 5. Artifacts have
much shallower dependence on η, and therefore tend to be far
brighter than random noise sources. Roughly half of modeled
artifacts have SNR > 10, while virtually none of the random
false detections had SNR > 7.

4. LINKING DETECTIONS TO FORM ORBITS
The central question for this paper is whether the linking of
tracklets into tracks and orbits will prove successful with real
LSST data. LSST MOPS will receive full-density lists of
detections of moving and transient targets, including NEOs,
MBAs and false detections. From these inputs MOPS must
create tracklets, tracks and orbits, despite the fact that the
data stream is contaminated by potentially large numbers of

false detections, which leads to high rates of false tracklets.
Our simulation synthesized detections in the LSST fields
from a full-density NEO model (∼850,000 orbits), an MBA
model (∼14 million orbits) and false detections (both random
noise and differencing artifacts). The final detection lists
were submitted to the MOPS makeTracklets routine, and
tracklets were created. Finally, tracklets were submitted to
the linking stage, the most challenging step.

Tracklets

The list of detections for a given field that has been
imaged multiple times in a night is submitted to the
makeTracklets part of MOPS. A tracklet is created for
a detection in the first image if there is a second detection
in its vicinity in the second image. The radius of the search
circle is defined by the lower and upper velocity thresholds
of makeTracklets, which were set to 0.05◦/day and
2.0◦/day, respectively, in this study. If there are more possible
connections in the circle, in addition to the “CLEAN” track-
let, consisting of detections of one object, then a “MIXED”
tracklet consisting of detections of two objects or a “BAD”
tracklet that includes a false detection is created as well.
Increasing the upper velocity limit increases the search area
and thus the number of false tracklets. In some simulations,
for velocities of 1.2–2.0◦/day, we used the information on the
trail length to limit the search area for companion detections.
At 1.2◦/day, a detection will have a non-PSF shape and its
length will be 1.8 times the PSF for the average 0.86 arcsec
seeing, and so its length and orientation can be determined.
Thus, instead of a large circular search area around trailed
detections, smaller regions consistent with the anticipated
velocity and direction of the trails are searched, and any
matching detections must have a compatible trail length and
direction. See Figure 9 for a graphical depiction.

The number of tracklets depends on the density of detections,
which can be high (Figure 10). To understand the feasibility
of the simulation we gradually increased the number of de-
tections in OC 28. The following steps are also summarized
as Cases A-E in Table 1.

1. Initially, we only used NEO orbits from Bottke’s model (Case
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Figure 7. Histogram (top) and cumulative distribution
(bottom) of random noise and artifacts on one night of LSST

survey.

A, Table 1). Switching to Granvik’s NEO model increased the
number of detections by 35% and tracklets by 55% (Case B).
Because Granvik’s NEO model is more current and has many
more objects we used that population in the simulations.
At this stage, with only NEO orbits, nearly all tracklets
were CLEAN, with only 4 MIXED tracklets (99.97% tracklet
purity).

2. Adding the MBA population to Granvik’s NEOs (Case C)
increased the number of detections in one month to 15 million
and the number of tracklets to 6 million. Most of the
tracklets were for MBAs; however, about 17% of tracklets
were MIXED, i.e., derived from different objects. The large
number of MIXED tracklets was substantially reduced by
taking advantage of trail-related velocity information when
in the velocity range 1.2–2.0◦/day (Case D). In this dual
velocity mode of makeTracklets, 1.2◦/day is the upper
threshold for creating a tracklet by searching in a circle. If
the detection is trailed and the trail length implies a velocity
> 1.2◦/day, then its matching pair in the second image
must be in a predicted location, based on the time between
exposures, and the position and velocity of the first detection
(Figure 9). Thus, the number of randomly linked detections
in a large circle decreased dramatically. This increased the
number of good NEO tracklets by 20% and decreased the
number of MIXED tracklets by a factor of 5.

3. The next step added false detections from random noise to
the full-density NEO and MBA detection list (Case E). This
doubled the number of detections to 30 million, and so the
synthetic to false detection ratio was about 1:1. However, the

Figure 8. Random noise and artifact counts per individual
field as a function of seeing during one month of the LSST

survey.

Figure 9. Schematic diagram for tracklet generation. Dots
represent detections from the first image, x signs from the
second one. The large circle represents the upper velocity
limit for creating tracklets without rate information (up to
1.2◦/day). Arrows in that circle are all possible tracklets,

connecting the first detections with all detections from the
second image in the reach. Every detection in the image has

such a circle and corresponding set of tracklets. If the
detection is faster than 1.2◦/day it will be trailed (on the

right), and information on the trail length and orientation can
be used to search a smaller area for its counterpart in the

second image (in two separate regions because the direction
of motion is unknown). The matching detection must also be

a trail with similar length and orientation.

number of tracklets only increased from 6 million in case C
to 7.5 million in case E. In this scenario tracklets were created
up to the 2◦/day limit without the use of velocity information.
In addition to 1 million MIXED tracklets, the simulation
generated about 700,000 BAD tracklets (i.e., those with both
synthetic and false detections) and 600,000 NONSYNTH
tracklets consisting solely of false detections.

4. The final, full-density simulation was achieved by also inject-
ing differencing artifacts, which more than doubled again the
total number of detections, to 66 million (Case F). Now, over
77% of detections were false, and so the ratio between syn-
thetic and false detections was about 1:3.5. NEOs represent
only 0.07% of the detection list. The full-density simulation
was challenging for the tracklet stage. Therefore, we used
trail-derived velocity information for tracklets created in the
velocity range of 1.2–2.0◦/day. Still, the total number of
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Figure 10. An example of a high-density LSST field from the enigma_1189 survey. The depicted field is number 1891
from night 3052, taken in the r filter with m5 = 24.79, seeing 0.63 arcsec, airmass 1.04, and field center at

opposition-centered ecliptic coordinates (Lat., Long.) = (2.91◦, 1.26◦). Thus the field is near opposition in excellent
conditions. The various types of detections referenced in the legend are “MB”—main-belt asteroids, “NEO”—near-Earth
objects, “NS”—false detections from random noise, and “FD”—false detections arising from image differencing artifacts.

tracklets was very large, ∼11.9 million. Out of this sample,
about 57% of tracklets were somehow erroneous, either in-
cluding at least one false detection or detections of different
objects. This simulation revealed that artifacts related to false
positives create the majority of the linking challenge. Though
we did not directly test it, the use of trail-related velocity
information presumably leads to a dramatic reduction in the
false tracklet rate for the full-density simulation.

The Linking Process

Automated linking of tracklets is a crucial element of LSST’s
NEO discovery pipeline. Without an automated linking stage,
the NEO discovery rate would suffer and would rely heavily
on follow-up observers, which will be impractical given the
faint limit and volume of the LSST detections. The MOPS
linking algorithm connects tracklets from three distinct nights
into candidate tracks that are subsequently tested through
orbit determination. The process consists of the following
four distinct steps:

1. Assemble tracklet list. The first step collects, for a given field,
all of the tracklets from the lastN nights for which the earlier
position and velocity project into the destination field. The
forward mapping of tracklets is based on linear motion, and
acceleration that leads to nonlinear motion is not accounted
for. Thus some NEO tracklets may be neglected, especially
those very near the Earth with a rapid change in geometry and

observable acceleration.
The combinatorics of linking strongly favor small N , but

the objective of NEO completeness favors large N , which
allows more missed detection opportunities. For LSST, N
usually ranges from 12–20 days, though 30 days has been
contemplated as a stretch goal. This work used N = 12
days for linking tests, consistent with our objective of un-
derstanding whether linkage could be at all successful in the
presence of large numbers of false detections. NEO linkage
of nearby objects is not likely to succeed for large N unless
MOPS is extended so that some plane-of-sky acceleration is
allowed when assembling the field-by-field tracklet lists. This
would likely lead to a modest increase in the NEO discovery
rate at the expense of many more false tracklets and increased
linking overhead.

2. Assemble candidate track list. The second step in link-
age generates a list of candidate tracks based on the in-
put tracklets. Generally, there are hundreds of available
fields per night, each being processed in parallel. The
linkTracklets algorithm is based on a kd-tree search
[13] that reduces the number of potential tracks to be tested
from n2 to n log n, where n is the number of tracklets avail-
able for linking on the given field. This saves a significant
amount of computational resources, but the problem remains
challenging.

3. Derive preliminary orbit. The third step takes the candi-
date tracks derived by linkTracklets and submits them
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for Initial Orbit Determination (IOD). MOPS uses Gauss’
method to generate potential initial orbits from the astrom-
etry, and for each track the best fitting IOD is selected. Most
false tracks were eliminated at this stage with no valid IOD.

4. Perform differential corrections. The fourth stage was Orbit
Determination (OD), which used JPL OD routines to obtain
converged orbits. MOPS filtered out some false tracks at
this stage based on rudimentary screening on post-fit residual
statistics. As discussed below, MOPS’s built-in orbit quality
filtering is not strict and is agnostic regarding the expected
errors in the astrometry, and thus relatively few false orbits
were rejected at this stage. All orbits that passed the MOPS
default quality screening were added to the MOPS derived
object table, which was the basis for understanding the overall
linking performance.

Linking Performance

Linking tests were conducted on observing cycle 28 of the
enigma_1189 baseline survey, with Granvik’s NEO model,
MBAs and the full false detection lists (Case F, Table 1). The
NEO linking efficiency is defined as the number of unique
NEOs present in the post-linking, derived-object catalog di-
vided by the number of unique NEOs with possible 12-day
tracks in the detection list. The linking efficiency was 93.6%
for H < 22 NEOs and 84.0% for all NEOs (i.e., H < 25).
These numbers were lower than the case without the false
detections, where we achieved > 99% linking efficiency,
similar to previous work [13], [3]. The lower efficiency for all
NEOs arises from the fact that the vast majority of NEOs were
of the smallest diameters, e.g., 23 < H < 25. Also, smaller
objects tend to have faster rates and greater acceleration
because they are seen at closer geocentric distances, and they
tend to have shorter observability windows. Note that the
derived linking efficiency was for a single set of selected kd-
tree parameters with a single 8-core workstation. With more
powerful computational facilities and a more optimized kd-
tree search (possibly on a per-field basis), there is excellent
reason to believe that the linking efficiency can be signifi-
cantly improved.

Many derived NEO orbits stemmed from objects in the MBA
input catalog. Table 2 shows the makeup of the 5348 NEO
orbits (defined by perihelion distance q < 1.3 au) derived
from OC 28 alone. Among these orbits, 2222 originated
from CLEAN linkages of actual NEOs, 1896 were CLEAN
orbits associated with MBAs and 1230 were erroneous (“Not
CLEAN”) linkages. Nearly all of the erroneous linkages
combined detections of different MBAs to form an NEO
orbit; few were contaminated by false detections. At first
blush this implies a purity of 77.0% in the NEO catalog,
but we describe below why this apparently low accuracy is
mostly a manifestation of an ineffective orbit quality screen-
ing applied by MOPS. Correct interpretation of the orbits
and improved screening increases the accuracy to 96%. In
contrast to the NEO orbits, Table 2 reveals that the MBA
catalog has 99.8% purity already at this stage, without more
refined filtering on orbit quality. Only 6 NEOs appear in the
non-NEO orbit catalog, and most of these are borderline cases
where q ' 1.3 au.

Orbit Quality Filtering

The large fraction of erroneous linkages that appear in the
NEO orbit catalog stem from a weak orbit quality filter
implemented by MOPS, which requires the post-fit RMS of
astrometric residuals to be less than 0.4 arcsec, a criterion that
is too readily met for astrometry with a median error less than
0.05 arcsec. Moreover, because the RMS is not normalized
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Table 2. Accuracy of derived orbits from OC 28. The “Incorrect Class.” column indicates the number of objects for which the
source object and the derived object had a different classification based on perihelion distance q. “Not CLEAN” indicates

erroneous linkage of observations from either false detections or multiple objects.

Derived Classification All Incorrect Class. Not CLEAN Accuracy
NEO (q ≤ 1.3 au) 5348 1896 Non-NEO 1230 77.0%

Non-NEO (q > 1.3 au) 765,833 6 NEO 1635 99.8%

by the reported astrometric uncertainty, it fails to take into
account the varying quality of astrometry within and between
tracklets in a candidate track. The upshot of this approach is
that most such erroneous linkages show residuals clearly in-
consistent with the astrometric uncertainty, and yet they pass
the MOPS quality control test. Rather than modifying MOPS
and re-running the simulation, we post-processed the post-
fit astrometric residuals, with their associated uncertainties,
to derive the sum of squares of the normalized residuals for
each orbit in the NEO catalog. This provided the so-called χ2

of residuals, from which it is straightforward from classical
statistics to calculate the probability pval that the fit is valid,
which is to say, the likelihood of of getting a higher value of
χ2 by chance. A higher post-fit χ2 naturally leads to a lower
pval because the increased residuals reflect a poorer fit that
has a lower probability.

Figure 11 depicts the distribution of pval among the 5348 cat-
aloged NEO orbits. The histogram reveals that few erroneous
linkages appear for pval > 0.25 and that few NEOs appear
for pval < 0.25, thus we selected 25% as the pval cutoff
for acceptable orbits. This criterion led to rejection of 7%
of clean and 87% of not clean orbits. Most of the clean orbits
that were filtered out were MBAs mis-classified as NEOs,
14% of which were filtered out. Only 2% of clean NEO
orbits were removed by this filter. As tabulated in Table 3,
more aggressive pval filtering—at the 50% or 90% level—is
less effective at removing erroneous linkages, even as the loss
of clean NEOs becomes unacceptable. Thus a modest mod-
ification of MOPS is necessary to allow a more statistically
rigorous orbit quality filtering, but the rudimentary approach
described here leads to a 96% purity (3816/3979, see Table 3)
in the NEO catalog. In the context of accuracy, the clean
MBAs that appear in the NEO orbit catalog are accounted as
correctly linked, which is, in fact, the case.

Figure 11. Histogram of postfit residual statistics of derived
NEO orbits. In most cases, Not CLEAN NEO candidates

can be easily distinguished.

The rate of contamination of NEO orbits by false positives is

Table 3. The number of cataloged NEO orbits of various
classifications for varying values of the pval orbit quality
filter. Here “Non-NEO” refers to MBAs that appear in the

derived NEO catalog with q < 1.3 au.

pval cutoff
Classification 0% 25% 50% 90%
All 5348 3979 3636 2314
CLEAN 4118 3816 3532 2279
Not CLEAN 1230 163 104 35
w/False Detection 35 3 1 1
CLEAN NEO 2222 2180 2062 1375
CLEAN MBA 1896 1636 1470 904
Not CLEAN NEO 2 0 0 0
Not CLEAN MBA 1228 163 104 35

extremely low, despite the large numbers of false positives
injected into the detection stream. As shown in Table 4,
after filtering at pval > 25%, only 5 false detections appear
in the NEO catalog. This can be compared to the total
of over 29,000 detections that form the NEO catalog and
the 51M false detections polluting the data stream. This
result demonstrates that NEOs can be successfully linked
with high efficiency and high accuracy when surveying with
the baseline LSST cadence, even in the presence of significant
numbers of false detections.

Table 4. Number of detections of various classifications
from OC 28. The total number in the input detection list and

the number that were linked into the derived NEO catalog
are shown.

Total —Derived NEO Catalog—
All pval < 25%

Total 65,900,928 39,188 29,288
MBA 14,899,279 20,680 11,868
NEO 48,628 18,446 18,060
False 50,953,021 62 5
% False 77.3% 0.16% 0.02%

Confusion from MBAs

To better understand the issue of the large fraction of NEO
orbits stemming from correctly linked non-NEO objects, we
used systematic ranging to explore the full orbit determina-
tion problem for these cases. Systematic ranging is an orbit
estimation technique designed to analyze poorly constrained
orbits, typically with only one or a few nights of astrometry,
for which the conventional least squares orbit determination
can fail due to nonlinearity [14]. We tested hundreds of cases
and found that nearly all showed a characteristic “V”-shaped
orbital uncertainty pattern in e vs. q that allowed both NEO
and MBA orbits (left panel, Figure 12). In some cases the “V”
shape was broken at the vertex so that there were two distinct
orbital solutions (center panel, Figure 12). The systematic
ranging technique affords a statistically rigorous estimate
of the probability that the track represents an NEO orbit,
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Figure 12. Examples of typical uncertainty regions for misclassified or erroneous linkages in the derived NEO orbit catalog.
The plots depict Monte Carlo samples from systematic ranging that reflect the extent of possible solutions in perihelion

distance q and eccentricity e. The plots show the typical case of an MBA discovery (left) where the data are compatible with
orbits spanning the NEO and MBA orbital regimes. In some of such cases two disjoint solutions are present, one NEO and one

MBA (center). Erroneous linkages of two different MBAs often lead to NEO orbits with a small uncertainty, though many
such cases are also hyperbolic.

Figure 13. Histogram of computed probability that a track
derived from MBA tracklets relates to an NEO orbit, as

derived from systematic ranging analyses.

and for these correctly-linked MBAs that appear with NEO
orbits, few have high NEO probabilities, reflective of the fact
that the data are compatible with the non-NEO (truth) orbits
(Figure 13). It is also important to note that most of these
MBAs that appear as NEOs are detected far from opposition.
Figure 14 shows that only ∼10% of these cases are found
within 60◦ from opposition, and that about half are detected
at 80◦ or farther from opposition. This result is merely
reflecting the classical result that orbital ambiguities result
from three-night orbits of objects far from opposition. It is
an unavoidable feature of observing at low solar elongations,
and is generally corrected after a fourth night of data is
obtained. However, as described below, the current MOPS
configuration does not efficiently attribute a fourth night of
data to the already cataloged orbit, and so the ambiguity
is often not resolved in our simulations. We note also
that this confusion is an artifact of simulating only a single
observing cycle. In actual operations, MBAs seen at low
solar elongation would eventually move into the opposition
region and appear even brighter there. These MBAs would
be readily cataloged with their correct orbits because there
is little ambiguity in the opposition region, at which point
it becomes straightforward to link to the ambiguous orbits
arising from near-sun detections.

Figure 14. Cumulative distribution of opposition distance
for MBAs that appear in the NEO orbit catalog with
pval > 25%. The distribution shows that this main-belt
confusion is largely limited to detections made far from

opposition, i.e., with low solar elongation.

We also conducted systematic ranging analyses on some of
the erroneous linkages leading to NEO orbits, almost all
of which were erroneous MBA-MBA linkages, and these
revealed a very different characteristic pattern in the e vs. q
uncertainty space (right panel, Figure 12). The uncertainty
region was typically very small, leading to a high computed
probability that the orbit is of an NEO (“Not Clean” in
Figure 13). In these cases, the uncertainty regions were
also elongated and with one side having a sharp cutoff. In
many such cases the heliocentric orbits were hyperbolic. This
points to a likelihood that more effective screening tests can
be developed to eliminate these false MBA-MBA linkages,
despite the fact that some pass even strict orbit quality tests.
For example, Table 3 shows that even for pval > 90% a
few dozen erroneous linkages remain in the NEO catalog.
However, most of these erroneous MBA-MBA linkages are
readily repaired when the individual MBAs are eventually re-
observed at other epochs and correctly linked through other
tracklets.
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5. DISCUSSION
We performed a high-fidelity simulation of linking NEO and
MBA detections into orbits in a realistic density scenario with
false detections and constraints of the LSST survey in one
observing cycle. Tracklet generation created false tracklets
at a rate of 57% being false. This rate can be larger if one
neglects the information on trail length and orientation when
creating tracklets. We used this velocity information for the
velocity range of 1.2–2.0 deg/day.

On a single-lunation, full-density simulation, with NEOs,
MBAs and false detections, we obtained a linking efficiency
of 93.6% for H < 22 NEOs with 12-day tracks. Linking
efficiency on the full population down to H < 25 was
lower. We believe that, with modest revision and tuning of
the MOPS linking algorithms and an appropriate allocation of
computational resources that this number can be significantly
increased, probably to 99% or more.

On the same simulation, the derived NEO catalog was com-
prised of 96% correct linkages. The remaining 4% of linkages
were almost exclusively incorrect MBA-MBA links, most of
which should be eliminated over a longer duration simulation.
Less than 0.1% of orbits in the derived NEO catalog included
false detections.

Some enhancements to MOPS are needed in the linking
stage to eliminate duplicate and false orbits. This includes
improving the orbit quality filter and tuning of the attribution,
precovery2 and orbit-orbit identification modules. Together
with optimization of the kd-tree track search, this would
increase the linking efficiency and thus increase the number
of cataloged NEOs. The linking efficiency directly affects the
discovery completeness as discussed in [4].
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